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ABSTRACT

In this note, we report a simple proof that Bessel polynomials satisfy maximally flat
group delay requirement for low-pass filters.
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The property of maximally flat variation of group delay with respect to pulsation for
a low-pass filter if its transfer function is constructed with a Bessel polynomial, is
commonly derived using approximate expansions of trigonometric functions (see Ref
[1] and references therein). In a radically different way, the approach presented here
allows one to obtain the result without any expansion of function.

The proof is as follows. For an harmonic regime with pulsation ω, let us denote
P(jω) = 1/H(jω) (j2 = −1) the polynomial of degree n in the variable jω, that
appears in the denominator of the transfer function H(jω) of a low-pass filter of order
n. Let us split it into its real part U(ω) and its imaginary part V (ω) and write

P(jω) = |P(jω)| ejψ(ω) = U(ω) + jV (ω) (1)

so as

|P(jω)|2 = U2(ω) + V 2(ω), ψ(ω) = tan−1
V (ω)

U(ω)
(2)

Assuming, as usual, that P(jω) has real coefficients, U(ω) and V (ω) are polynomials
in ω that are, respectively, even and odd. Consequently, if n is even, the respective
degrees of U and V are n and n− 1. If n is odd, they are n− 1 and n, respectively.

To express the group delay τ(ω) =
dψ

dω
(ω) requires the knowledge of the derivative of

the phase shift ψ(ω) with respect to ω, which we express in an obvious way by means
of the derivative of tanψ :

dψ

dω
=

1

1 + tan2 ψ

d tanψ

dω
=

1

U2 + V 2

[
U
dV

dω
− V dU

dω

]
(3)
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The numerator and the denominator of the last expression are both polynomials in the
variable ω2. As polynomials in ω, the numerator has degree 2n−2, whereas the denom-
inator has degree 2n, whatever the parity of n is. Hence, the impossibility to obtain a
strictly constant group delay by means of polynomials, a well-known fact. However, we
can approach a quasi constant value of τ in a large part of the passband 0 ≤ ω ≤ ωc, if
we demand that in (3) the numerator be proportional to the denominator, up to a term
proportional to (ω/ωc)

2n which, by the way, decreases in this range as n increases. So,
let us try the trick

U
dV

dω
− V dU

dω
= K1

[
U2 + V 2

]
+K2 ω

2n (4)

where K1 and K2 are real constants, with K1 > 0. By a suitable definition of a
non-dimensional variable x = ω/K1, we may rewrite (4) in the form

UV ′ − V U ′ = U2 + V 2 +Kx2n (5)

where the symbol “prime” represents now the derivative with respect to x and K is
another real constant. Since K is constant, we have

d

dx

{
1

x2n

[
UV ′ − V U ′ − U2 − V 2

]}
=
dK

dx
= 0 (6)

Performing the derivative, we get the equation

U [xV ′′ − 2nV ′ − 2xU ′ + 2nU ] + V [−xU ′′ + 2nU ′ − 2xV ′ + 2nV ] = 0 (7)

that can be written in the form

< [P?E] = 0 (8)

where E is the complex number defined by

<[E] = xV ′′ − 2nV ′ − 2xU ′ + 2nU, =[E] = −xU ′′ + 2nU ′ − 2xV ′ + 2nV, hence

E = jx(−U ′′ − jV ′′)− 2jx(V ′ − jU ′)− 2n(V ′ − jU ′) + 2n(U + jV ) (9)

Now, using the variable s = jx, the derivatives of P with respect to s are

dP
ds

= −jU ′ + V ′,
d2P
ds2

= −U ′′ − jV ′′ (10)

It then follows that

E = s
d2P
ds2
− 2(s+ n)

dP
ds

+ 2nP (11)
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Given (8), it seems natural, discarding other exotic possibilities, to search for polyno-
mials satisfying E ≡ 0. This leads us to the equation

s
d2P
ds2
− 2(s+ n)

dP
ds

+ 2nP = 0 (12)

which is exactly that of Bessel polynomials θn(s), whose mathematical properties are
extensively described in Ref [3]. This proves the optimality of Bessel polynomials as
regards the desired flatness property of group delay.

To go further and noticing that τ(ω) does not depend on the normalization of P , let
us take2

P(s) = θn(s) =
1

2n

n∑
k=0

(2n− k)!
n!(n− k)!

(2s)k (13)

Then, it is seen that the highest degree term sn in this sum has coefficient 1. This
means that the term which is lacking in UV ′ − V U ′ to match U2 + V 2 is exactly x2n.
Consequently, we must set K = −1 in (5). We then arrive to the remarkable formula

dψ

dx
(x) = 1− x2n

|θn(jx)|2
(14)

valid for Bessel polynomials only, and potentially useful for practical purposes as already
pointed out by I.M. Filanovsky in Ref [2] (formula (28)). That formula provides a simple

way to check the said flatness property by means of its last term, η =
x2n

|θn(jx)|2
,

computed for some characteristic value of x. The latter is taken as 1 in table I, where
it is shown how η(1) hugely decreases as n is increasing. Finally, it is easy to deduce
from (14) that in the other extreme limit x � 1, the group delay is decreasing as x
increases, according to

dψ

dx
(x) ' n(n+ 1)

2x2
(15)

We end here, further studies, of η(x) in particular, being beyond the scope of this note.

n 1 2 3 4 5 6

η(1) = 1/|θn(j)|2 0.5 7.7 10−2 3.6 10−3 7.8 10−5 10−6 8.4 10−9

Table I : η(1) as a function of n for n ≤ 6

2Of course, one may finally define the transfer function as H(s) = θn(0)/θn(s), in order to
have H(0) = 1.
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